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Abstract

Accurate reduced-order models of turbulent flows have been traditionally constructed with the proper orthogonal decomposition
(POD), however the method has been limited to prototypical flows over a narrow parameter range. An orthogonal complement subspace
method is developed here to treat inhomogeneous boundary conditions while implicitly coupling the velocity and temperature fields of
turbulent convection. A new flux matching procedure is formulated as a state space residual series expansion to efficiently model param-
eter dependent convection, greatly extending the utility of the reduced-order modeling framework. An illustrative test case of turbulent
channel flow over heated blocks shows flow and thermal models with 95% accuracy over the domain can be produced, while simulta-
neously reducing the number of degrees of freedom by a factor of 103. Error bounds are formulated and provide a posteriori error esti-
mates for the reduced-order model.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Design and analysis of complex engineering systems
involving turbulent convection often require careful
numerical simulations using computational fluid dynamics
and heat transfer (CFD/HT) or detailed experimental data,
such as that obtained by full field techniques such as tomo-
graphic interferometry and particle image velocimetry to
accurately describe the fluid flow and heat transfer pro-
cesses of the system [1]. Both methods of system character-
ization are time intensive, particularly so for carrying out
parametric studies. In early stages of design, it may be
desirable to trade this effort for an experimentally validated
reduced model that captures the dominant physics, but is
computationally efficient. Such models may be used in con-
junction with optimization routines to quickly perform
0017-9310/$ - see front matter � 2006 Published by Elsevier Ltd.
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parameter sensitivity studies. A low-dimensional model of
this type can also be integrated with multi-scale computa-
tions to efficiently bridge a range of length scales without
requiring a single simulation to model all length scales
simultaneously.

Methods of reduced-order modeling can generally be
divided into state space and distributed parameter system
approaches. State space methods reduce a system to an
input/output map and many tools are available to analyze
interconnected state space components, see [2] for an appli-
cation-based overview. Distributed parameter systems aim
to approximate the physics over the entire domain, as
opposed to returning a vector of desired outputs. This
approach is desirable in modeling convective flows, as the
model is not limited to returning a prescribed quantity,
such as a set of velocity, temperature or heat flux informa-
tion, rather the complete velocity and temperature fields
are available for further analysis of the transport processes
involved. The fundamental principle of distributed param-
eter modeling is to find a suitable set of modes to project
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Nomenclature

a, b modal weight coefficient
c mode scaling constant
d subspace distance
e error
keff effective thermal conductivity
m number of observations
n number of system DOF
p number of retained modes
r residual
s number of control surfaces
~u velocity field
E spectral energy
F flux function
G goal
J error functional
P orthogonal projection matrix
Q power dissipation
T temperature field

Greek symbols

k eigenvalue
q fluid density

meff effective viscosity
~u velocity mode
w temperature mode

Subscripts

0 source function
h heat
i in-plane
m mass
o out-of-plane

Superscripts

+ matrix pseudo-inverse
* approximate solution
’ orthogonal complement, dual space
obs observational data
� projected solution
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the governing equations onto, reducing the solution proce-
dure to finding the appropriate weight coefficients that
combine the modes into the desired approximate solution.

A parametric system is defined here as a system contain-
ing a source term or boundary condition that can be varied
over a specified range in order to produce different system
responses. For a convective flow, such parameters include a
geometrical length, mass flow rate, boundary heat flux or
temperature, or volumetric heat generation, to produce dif-
ferent flow patterns, and/or transport characteristics. This
can be quantified with one or more relevant dimensionless
groups, such as Reynolds or Strouhal number, non-dimen-
sional heat generation rates, or a set of aspect ratios to
define geometry. Changes in thermophysical property vari-
ations are excluded from this definition because they may
arise naturally even in the absence of the parametric vari-
abilities defined here. In summary, the parametric nature
may result from a prescribed boundary condition, for
example inlet velocity or wall heat flux, interior condition,
such as volumetric heat generation, or geometric parameter
such as an aspect ratio.

2. POD analysis of convective systems with parametric

variations

The proper orthogonal decomposition (POD) is a sto-
chastic tool used to assemble the model-specific optimal
linear subspace from an ensemble of system observations.
Owing to the stochastic nature of the subspace calcula-
tions, the POD is ideally suited for nonlinear phenomena
and has been used extensively in low-dimensional modeling
of turbulent flows, see [3] for a more complete description
and review. A major shortcoming of the existing POD
methodology to date is its inefficient treatment of a range
of model parameters. Previous reduced-order flow and heat
transfer modeling studies have investigated the dynamics of
a prototypical system under a single Reynolds or Rayleigh
number or limited range of variation. Laminar flows were
investigated by Deane et al. [4] and ad hoc mode scaling
showed mixed results (±15% in period predictions) for
approximating flows from 52 observations over a small
range of Reynolds numbers. For laminar flows with vari-
ous inlet profiles, both Park and Kim [5] and Ravindran
[5–7] suggest homogenizing the POD modes by subtracting
a reference field that satisfies the governing equations. Park
and Kim [5] constructed a low-dimensional controller for
flow over a backward facing step based on 1000 observa-
tions of two inlet velocity profiles. Ravindran homogenized
100 observations for developing a flow controller using
blowing at Re = 200 [6,7]. In the investigation of transi-
tional behavior, Ma and Karniadakis used 40 modes to
study the limit cycle of three-dimensional flow around a
cylinder at a critical Re = 188 [8] and at Re = 610 [1]. No
special boundary treatment was required for either flow
because periodic boundary conditions were employed.

In low order modeling of heat transfer, Park and Cho
partitioned the linear governing equation into homoge-
neous and inhomogeneous components to account for
boundary conditions in order to model conduction [9]
and temperature and species transport for a fixed velocity



Fig. 1. Model geometry from Yoo et al. [25].
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field [10], using 200 and 400 observations respectively. Siro-
vich [11–13] analyzed the dynamics of natural convection
by working with homogeneous deviations from the mean
flow, allowing the mean to take the inhomogeneous bound-
ary conditions and typically using around 200 observa-
tions. Park and Li [14] modeled natural convection with
30 sinusoidal boundary heat flux profiles for a total of
3000 observations.

Recent developments in low-dimensional flow modeling
have been made by Sirisup and Karniadakis [15] who have
proposed using a penalty function Galerkin method to
treat time varying boundary conditions. Geometrical scal-
ing has also been investigated by Taylor and Glauser [16]
who constructed a low-dimensional model of a variable
angle diffuser at the expense of 30,720 observations. Utta-
kar et al. [17] used POD for reduced turbulent simulations
of flows with moving boundaries; however they do not
describe any reduced-order model development, only the
accuracy and data compression associated with POD rep-
resentation of the observations. Galletti et al. [18] modeled
laminar flow over a confined square block by interpolating
the modal weight coefficients at different Reynolds number
to correct the pressure drop across the duct from 160
observations. To summarize the work to date in developing
POD-based models of flows over a range of varying Rey-
nolds and Rayleigh numbers, inhomogeneous boundary
conditions are either treated through expensive homogeni-
zation procedures or through a very large, and often
impractical, number of system observations.

A key concern in the existing POD methodology is
determining the minimum number of observations required
to construct a POD subspace that faithfully represents the
physics of the system. In dynamic systems simulation, each
simulation time step is available to be included in the
ensemble. Experimentally-based POD models of turbulent
flows also benefit from large data ensembles, as many
repeated measurements are required to generate stochasti-
cally significant turbulence statistics. For parametric
reduced-order modeling of stationary turbulent flows, the
focus of the present study, each observation is from an
independent system snapshot. For maximum computa-
tional efficiency, special consideration is given to the mini-
mum number of observations and associated error. To the
best of the author’s knowledge, the only published attempt
of using POD-based modeling for stationary analysis of
thermo-fluid systems was by Ly and Tran [19]; however
their solution method was based on interpolating splines
between weight coefficients to match a desired parameter
value. This method would require higher order multi-
dimensional interpolation to model a complex system with
multiple parameters and also does not guarantee that the
desired parameter level will be achieved.

The modeling framework is developed through a refor-
mulation of the proper orthogonal decomposition (POD).
Orthogonal complement subspaces are introduced to
parameterize the POD modes as a function of the varying
boundary conditions, based on the ideas set forth by Chris-
tensen et al. [20] and Jorgensen et al. [21]. In working with
Reynolds-averaged Navier–Stokes (RANS) simulations,
the standard method of Galerkin projection of the govern-
ing equations on the POD subspace is impossible without
additional effort to specify the effective viscosity. Further,
Rempfer [22] demonstrates that the Galerkin projection
can produce unstable dynamical systems and ultimately
lead to unphysical results. A new method for computing
the modal weight coefficients is to use a state space residual
series expansion, thereby greatly improving the solution
efficiency and eliminating the computational cost and
instabilities associated with the Galerkin projection. This
method has been demonstrated to be very successful in
constructing low-dimensional models of parametric bound-
ary driven turbulent flows [23] and to the best of the
author’s knowledge is the only RANS-based POD model-
ing methodology [24]. This methodology is extended in
the current paper to incorporate the energy equation to cre-
ate low-dimensional models of turbulent convection. The
results indicate parameter dependent turbulent forced con-
vection flows spanning a range of Reynolds numbers and
heat fluxes can be reduced into accurate low-dimensional
models, to be employed in design and optimization studies.
3. Model parameters

The methodology is illustrated for a RANS simulation
of two-dimensional duct flow of air over two aluminum
heated blocks in tandem (see Fig. 1). The geometry is iden-
tical to the experimental measurements of Yoo et al. [25],
whose data were used to validate the turbulence modeling
in the CFD/HT code. The steady, incompressible, constant
properties RANS continuity, momentum and energy equa-
tions without external forcing or buoyancy effects are:

r �~u ¼ 0; ð1aÞ

~u � r~u�r � ðmeffr~uÞ þ
1

q
rP ¼ 0; ð1bÞ

qcp~u � rT �r � ðkeffrT Þ ¼ 0; ð1cÞ

where meff ¼ mþ Cl
k2

e and keff ¼ k þ cpmt

qPrt
with Prt = 0.85 and

can be computed through any RANS-based turbulence
model. The standard k–e model with non-equilibrium wall
functions [26] was used to model the effect of turbulence on
the mean flow and the inlet velocity, turbulent kinetic en-
ergy and turbulent dissipation rate boundary profiles were
calculated assuming a fully developed flow. The fully con-
verged CFD/HT model consisted of 10,000 grid cells and
solving for two velocity components, pressure, k and e at



Fig. 2. Comparison of numerical solution at Re = 13,690, with the
experiments of Yoo et al. [25].
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each grid cell resulted in approximately 50,000 degrees of
freedom (DOF) to model the flow. The solution was dem-
onstrated to be independent of grid size and convergence
criteria, and each solution required approximately 500 iter-
ations to converge.

The flow parameter range of the model was chosen to be
13,690 6 Re 6 41,070, for Re ¼ qB�u=l which corresponds
to an average velocity of 5:0 6 �u 6 15:0 m/s in air, and
the block power was assumed to range from 25 to 200 W.
The inlet temperature was fixed at 288 K and all fluid prop-
erties were evaluated at this temperature. All results will be
reported as the temperature rise above this nominal value.
Table 1 summarizes the set of observations used to con-
struct the reduced-order model subspace. The heat input
to each block was applied as a uniform heat flux on the
bottom surface (y = 0). The local Nusselt number
(Nu = hB/k), using a running coordinate over the surface
of blocks, is plotted against the experimental data of Yoo
et al. [25] in Fig. 2. The numerical simulation agrees fairly
well with the experimental data with some error in magni-
tude over the surface of the first block. Chen et al. [27] have
experimentally investigated a similar geometry for similar
Reynolds numbers and have suggested the standard low
Reynolds number turbulence model of Jones and Launder
[28] provides accurate local heat transfer coefficient predic-
tions. The code is based on wall functions and the pressure-
gradient sensitive wall functions employed provide the
most accurate results without significant code modifica-
tions. It should also be noted that the mesh employed here
is of similar size to that of Chen et al., even though the wall
functions are used in this investigation while the Jones–
Launder low Reynolds number model relies on a damping
function to model the near wall effects. Detailed computa-
tions of flow and heat transfer characteristics of periodic
blocks in a rectangular channel is presented in [29].

The basic motivation of low-dimensional modeling is to
create a more computationally efficient way of reproducing
the physics described by a high fidelity numerical simula-
tion or detailed experimental dataset. It is important to
note that both numerical and experimental observations
will depart somewhat from the true system behavior. The
purpose of this investigation is to present a reduced-order
Table 1
Observation database

k Re �u Q1 (W) Q2 (W)

1 13,692 5 25 200
2 16,430 6 50 175
3 19,168 7 50 100
4 21,907 8 100 150
5 24,645 9 125 175
6 27,383 10 100 100
7 30,122 11 200 175
8 32,860 12 100 75
9 35,599 13 200 125

10 38,337 14 200 50
11 41,075 15 200 25
modeling framework for turbulent forced convection, not
to model a particular system. Thus, the numerical data will
be treated as the ‘exact’ system response in the description
of the methodology below, and some discussion of various
errors and their contribution to total error will be subse-
quently provided.
4. POD reduced-order modeling methodology

This section contains a brief overview of the POD, with
[3] providing an extensive description of the method and its
previous use in the analysis of turbulent flows. The POD
uses principal component analysis to decompose a large
DOF system into a series of fundamental modes and an
approximation to the governing equations is sought using
the expansion theorem:

uðx; tÞ ¼
Xm

i¼1

aiðtÞuiðxÞ: ð2Þ

Solution methods based on (2) require the specification of
a family of functions forming the modal basis U =
{u1,u2, . . .,um} that span the domain X. The basis func-
tions usually satisfy homogeneous boundary conditions
individually and inhomogeneous boundary conditions are
treated by adding a source function:

~uðx; tÞ ¼~u0ðx; tÞ þ
Xm

i¼1

aiðtÞ~uiðxÞ: ð3Þ

Note in the most general case the source function,~u0, may
account for time dependent boundary conditions. In the
context of convection, the solution and modal basis will
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be considered vector-valued functions. In traditional POD
analysis of turbulent flows, the source function in (3) often
assumes the form of the ensemble mean, ~u0 ¼ h~ui, which
renders the POD modes akin to the Reynolds stresses.

The POD is a stochastic tool that computes the optimal
linear basis for the modal decomposition in (3). Given an
ensemble of system observations, f~uk 2H jk¼ 1;2; . . . ;mg,
~U can be computed by minimizing the projection error
onto the ensemble, minfhk~uk�P k~ukkg where Pk is the
orthogonal projector, k � k is the induced norm on the
Hilbert space H and h � i denotes the ensemble average.
For discrete data m observations of the system containing
n DOF are assembled into the observation matrix
~U ¼f~u1;~u2; . . . ;~umg2Rn�m. The empirical basis functions
(referred to as ‘POD modes’) are then computed as a linear
combination of the linearly independent observations,
known as the method of snapshots, see [30], viz,

~uðxÞ ¼
Xm

i¼1

bi~uiðxÞ: ð4Þ

The weight coefficients in (4) are the eigenvectors of
ð1=mÞ~U T~U 2 Rm�m, allowing the number of observations
and not the number of system DOF to dictate the size of
the basis function computation. Using the method of snap-
shots to assemble the basis functions as admixtures of the
system observations implies that ~U intrinsically contains
any linearly invariant properties of ~uk from the fact that
~U has been computed only through linear operations on
~U . Thus, the POD modes individually satisfy the incom-
pressibility condition, r �~uk ¼ 0 8k and homogeneous
boundary conditions, ~uðoXÞ ¼ 0 where ~uðoXÞ ¼ 0.

From an implementation standpoint, the POD mode
may be computed by assembling the observation matrix
~U ¼ f~u1;~u2; . . . ;~umg 2 Rn�m and then decomposing ~U using
the singular value decomposition (SVD). Given a matrix
A 2 Rn�m, the SVD produces the decomposition A =
URVT where U 2 Rn�n is a matrix whose columns form
the left singular vectors of A, V 2 Rm�m is a matrix whose
columns form right singular vectors of A and R is a pseudo-
diagonal matrix of the singular values. It can be shown that
ATA = VR2VT with eigenvalues equal to kk ¼

ffiffiffiffiffiffiffi
Rkk
p

. The
method of snapshots can be implemented as
B ¼ SVDð~U T~UÞ with B 2 Rm�m and then assembling
~U ¼ ~UB. The energy captured by each POD mode is then
computed as Ek ¼ kkPm

k¼1
kk

and the total energy resolved

using the first p modes E1!p ¼
Pp

k¼1
kkPm

k¼1
kk

.

5. Low-dimensional turbulent flow modeling

The modal weight coefficients in the expansion (3) for a
new solution~u� can generally be computed as ai ¼ ð~u�;~uiÞ.
However, ~u� is unknown, and the only feature that is
known about the new solution are the boundary condi-
tions. The standard procedure in the POD methodology
would be to substitute in the model expansion of (3) into
(1b) and project the governing Eq. (1b) onto the POD sub-
space through the Galerkin procedure, viz,Z

X

~ui � ð~u � r~u�r � ðmeffr~uÞ þ
1

q
rPÞ ¼ 0: ð5Þ

Eq. (5) could be solved along with a set of constraints in
order to enforce the boundary conditions [22], although
no guarantee can be made that the boundary conditions
will be satisfied. The POD modal basis of (3) contains
velocity field information only. Examination of the k–e
model shows the turbulence transport equations are func-
tions of velocity gradients only, thus the RANS momen-
tum equation can be viewed as a model for a laminar
flow with a strain-rate dependent viscosity. A practical
implication of reduced-order models of RANS-based sim-
ulations is that the number of retained modes is on the
order of previous laminar flow investigations (<102), as
opposed to reduced-order models derived from direct
numerical simulation data which retain (>103) modes, be-
cause the fine scale details of the turbulence transport are
modeled in the eddy viscosity.

The k and e transport equations could be evaluated by
substituting the velocity modes into the governing equa-
tions, but the boundary conditions would need to be spec-
ified. Moreover, this would require operating point-wise on
the velocity field, violating the fundamental idea of distrib-
uted parameter model reduction which is to find a suitable
set of modes to project the governing equations onto and
then evaluate the weight coefficients. All the previously dis-
cussed low-dimensional flow investigations have used the
Navier–Stokes equations as the governing equations, either
through analyzing laminar flows or utilizing higher order
spectral methods on fine enough meshes such that all rele-
vant turbulence transport length scales are resolved.
RANS-based POD presents the unique problem of not
being able to evaluate the governing equations without
specifying the effective viscosity. It will be shown that given
a series of systems observations an accurate low-dimen-
sional model can still be realized, making this method well
suited for inverse problems.

6. RANS-based POD

Since the POD modes are themselves solutions to the
governing Eqs. ((1a)–(1c)), new solutions can be generated
by using inhomogeneous modes to satisfy the boundary
conditions and letting the structure of the POD modes
resolve the flow field over the remainder of the domain.
Since the POD basis is the optimal linear subspace for a
given dataset, the approximate analysis is treated as a lin-
earized boundary value problem. This assumes the modal
contribution can be uniquely determined by satisfying the
boundary conditions.

Ensuring that only the boundary conditions are satisfied
and ignoring the residual over the rest of the domain is a
familiar concept. Using information from only a small sub-
set of the entire domain to estimate the velocity field is



Fig. 3. Mean-centered velocity POD and orthogonal complement POD
(PODc) modal energy content.
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commonly used in flow control because it is impractical to
distribute sensors through the entire flow field. One such
example used of linear stochastic estimation to correlate
pressure measurements at the wall and POD modal coeffi-
cients to develop a low-dimensional flow controller [16].

In the analysis of complex flows, the exact velocity pro-
file on the boundary is often unknown. However, the
design objective is often based on integral conditions, such
as the appropriate mass flux through a portion of the
boundary, prompting the introduction of the mass flux
function:

F mð~uÞ ¼
Z

Cm

q~u � n̂dx; Cm � X: ð6Þ

This function generally returns a vector because Cm may be
a finite set of discontinuous surfaces. A new approximate
solution can be expressed as the vector of goals Gm 2 Rs

corresponding to the desired mass flux through the set of
control surfaces C = {C1,C2, . . .,Cs} that define the desired
flow field~u� such that G ¼ F ð~u�Þ. The solution procedure is
then to find the set of weight coefficients that minimizes the
error on the set of control surfaces Cm:

min Gm �
Xp

i¼1

aiF mð~uiÞ
�����

�����
( )

; p 6 m: ð7Þ

The solution procedure is carried out as a series expansion
with the ordered POD modes forming the expansion se-
quence and terms are successively added to the series until
the boundary conditions are satisfied. Algorithmically, this
can be expressed as:

DGm;i ¼ Gm;i�1 � F mð~ui�1Þ; ð8aÞ
ai ¼ F þmð~uiÞDGm;i; ð8bÞ

~ui ¼~u0 þ
Xi

j¼1

aj~uj; ð8cÞ

where F+() � (FTF)�1FT is the Moore–Penrose matrix
pseudo-inverse producing the least squares approximation
[31]. To initiate the calculation, DGm;1 ¼ Gm � F mð~u0Þ and
the first modal weight coefficient is computed as a1 ¼
F þmð~u1ÞDGm;1. The process is repeated until the desired set
of mass fluxes is satisfied. The solution process is akin to
a perturbation expansion where the source function, ~u0 in
(3), acts as the leading order solution and each modal con-
tribution serves as the next order correction. The difference
from traditional perturbation methods is that the succes-
sive corrections occur in state space to satisfy the desired
mass fluxes, without considering the remainder of the do-
main. This is a highly desirable property as the exact veloc-
ity profile on the boundary of a complex flow may be
unknown. Since POD modes are solutions to the governing
equations (to within a multiplicative constant), they con-
tain physically correct velocity profiles and satisfy the
divergence free condition. The pressure term in (1b) can
be viewed as a Lagrange multiplier to enforce the
divergence-free condition of (1a), however the solenoidal
condition of ~u eliminates the need to account for the pres-
sure term.

Before the reduced-order methodology can be demon-
strated, a prescription for choosing the source function
must be described. In a parametric flow, different modes
should become more or less important under various
parameter values [32]. The source term should then be a
function of the mass flux goals, ~u0ðGmÞ, which can be
accomplished by choosing a member of the ensemble as
the source function and constructing the POD subspace
as an orthogonal complement. This method is superior to
the standard mean-centered POD method (referred to as
simply the POD from here on), where the source function
is taken to be the ensemble mean because solutions ‘far’
from the mean tend to incur larger errors and this distance
from the mean has previously been used as an error mea-
sure [20]. Also note, using the mean-centered POD modes
in the above flux matching procedure to compute the
modal weight coefficients does not guarantee that the
boundary conditions for all required approximate solutions
within the parameter will be satisfied.

The source function is selected by finding the observa-
tion that is geometrically nearest the desired approxima-
tion in state space:

min F mð~u�Þ � F mð~ukÞk k1

� �
; k ¼ 1; 2; . . . ;m; ð9Þ

with~u0 � ~Uobs, the remaining members of the observations
form the complement set ~U 0 which are made orthogonal to
the source function. The POD is then performed on ~U 0

without mean-centering, decomposing the POD subspace
into orthogonal complements:

~U ¼~u0 þ~u0; where ~u0 2 Rn�1 and ~u0 2 Rn�m�1:

ð10Þ

Thus, the approximation procedure consists of selecting the
‘closest’ member of the ensemble to the desired solution to
serve as the source function and the information about the
flow physics contained in the remaining observations is
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converted into an orthogonal series expansion about the
source function to make higher order corrections to the
approximate solution. An important property of this
decomposition (referred to as the ‘PODc’ from here on)
is that it does not significantly change the quickly decaying
nature of the modal spectrum (see Fig. 3).

To demonstrate this procedure, a test case correspond-
ing to Re = 36,320 (�u� = 13.33 m/s in air) was randomly
selected, for the configuration shown in Fig. 1. The set of
mass flux control surfaces reduces to a single surface coin-
cident with the domain inlet (conversely, the domain outlet
could be used to produce the same results by continuity).
This simple flow has only a single parameter to be used
as a matching condition, indicating the 2-term expansion
Fig. 4. (a) Velocity absolute approximation erro
~u ¼~u0 þ a1~u1 is all that is available for the solution
approximation. It has been demonstrated that the cumula-
tive energy resolved by the first k modes produces an error
bound on the approximation [33]. Fig. 3 shows E1 	 0.98,
indicating the 2-term approximation should produce errors
on the order of 2% in the sense of the L2-norm. Eq. (11)
selects the observation #9 in Table 1, corresponding to
�u = 13.0 m/s, as the source function.

Fig. 4(a) illustrates the decaying error in the velocity
magnitude for the 1- and 2-term approximate solutions.
Fig. 4(b) plots the exact solution and the approximate
velocity field in the vicinity of the leading edge of the
first block, which is where Fig. 4(a) shows the maximum
error occurs. Both Fig. 4(a) and (b) show that approximate
r (m/s) and (b) detailed local velocity fields.
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solution is very accurate especially considering the full
CFD model requires 50,000 DOF and the reduced-order
model contains only 2 DOF. The 2-term approximation
captures the inlet velocity profile exactly, produces a max-
imum absolute point-wise error of 0.232 m/s and an L2 –
error norm over the domain of 0.003. Even though the
observation space is dense with various mass flow rates,
weighted averaging and scaling observations will generally
result in poor approximations. For example, rescaling the
observation with the difference in mass flow rate from the
nearest observation (�u = 13.0 m/s) produces errors three
times as large as the PODc based approximation.

At this point, it is reiterated that this reduced-order
modeling procedure has been demonstrated on significantly
more complex flows, comprised of multiple control sur-
faces, with very successful results [23] and the objective of
the present study is to couple the energy equation into
the methodology to extend the low-dimensional modeling
framework to convective flows. As the system grows in
complexity and more parameters are incorporated, more
matching conditions are generated, which requires more
modes to be retained in the approximation. Thus, the
level of approximation keeps pace with growing system
complexity.
7. Low-dimensional turbulent convection modeling

An efficient and accurate reduced-order modeling meth-
odology for turbulent flows has been demonstrated in the
previous section, and the objective is now to extend the pro-
cedure to include a low-dimensional solution to the energy
equation. The orthogonal complement POD and flux
matching procedure from the previous section will be
employed because of their simplicity, and the main chal-
lenge will be in coupling the temperature and velocity
fields. To begin, independent velocity and temperature
decompositions will be assumed:

~u ¼~u0 þ
X

i

ai~ui and T ¼ T 0 þ
X

j

bjwj: ð11Þ

The temperature POD modes are computed with the same
procedure, given the temperature observation matrix
H = {T1,T2, . . .,Tm} 2 Rn�m.

A natural way to couple the velocity and temperature
fields is the Galerkin projection, but as with the RANS
momentum equation, the RANS energy equation would
require keff to be specified. Thus, substituting the approxi-
mate velocity field~u� into (1c) and projecting onto the sub-
space spanned by W = {w1,w2, . . .,wm} is considered
ineffective here.

The flux matching procedure will be extended to include
the energy equation, accordingly the heat flux function can
be defined analogous to (7) as

F hðT Þ ¼
Z

Ch

�k
dT
dn̂

dx: ð12Þ
The heat flux control surfaces correspond to the 3 surfaces
of each block exposed to the airflow. Alternatively, the bot-
tom surface of each block where the heat flux is applied
could also be used as the control surface because the system
is steady.

POD modes are solutions to the governing Eqs. (1a)–
(1c) and inhomogeneous modes can be viewed as a solution
with arbitrary boundary conditions. The flux functions (6)
and (12) define an inverse problem of finding the corre-
sponding boundary conditions. When the flux function
involves a gradient, approximation with discrete data can
produce large errors, especially if the gradient is sharp rel-
ative to the measurement point spacing. This can be espe-
cially difficult if the observations were generated through
CFD/HT data, where wall functions were used to alleviate
near-wall grid resolution requirements when integrating the
turbulence transport equations. Temperature wall func-
tions based on T+(y+) � (Tw � Tp)qcput/q00w are used to link
the wall boundary condition to the temperature in the first
grid cell, Tp. When generating the observations either Tw or
q00w is specified, but in the temperature POD modes, only Tp

is known, rendering the evaluation of wall heat flux or tem-
perature an under-determined problem.

The wall fluxes can be evaluated by recalling that the
method of snapshots expresses the POD modes as a linear
combination of the observations. This can generally be
written as

~U ¼ L~U ; ð13Þ

although the linear transform L cannot be written explicitly
because it involves a SVD operation. If the POD procedure
is thought of as finding the principle axes of the data con-
tained in ~U , then L can be though of as the m � m rotation
matrix between ~U and ~U. The transformation matrix L can
be computed as the projection of the observations onto the
modes utilizing the pseudo-inverse again and the modal
fluxes can be directly computed, viz,

L ¼ ~Uþ~U ð14aÞ
F m ¼ ðvTLÞT: ð14bÞ

The vector v defines the observation mass fluxes and the
transpose operation in (14b) is to maintain the same dimen-
sion between Fm and v. Defining the temperature observa-
tion matrix and the associated matrix of block heat inputs,
Q, the modal heat flux can be computed as:

F h ¼ ðQTTþWÞT: ð15Þ

This procedure can be used to evaluate any flux function
that defines the same quantity contained in the goal vector
G regardless of where C is located in the domain.

A new method for coupling the temperature field to the
velocity field needs to be devised. Ideally, the temperature
source function would be a solution to (1c) with ~u� as the
velocity field and corresponding keff. Then, the linearity
of (1c) for a known ~u and keff could be used to rescale
the solution as T 0 ¼ cT ð~u�Þ. An approximation to this
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would be to borrow the temperature field associated with
~u0 and use the POD modal expansion to perturb the solu-
tion until the boundary conditions are satisfied. Source
function scaling can also be used to improve the approxi-
mation since it is treated as the dominant mode of a linear
system:

T 0 ¼ cT ð~uoÞ þ
Xp

i¼1

biwi: ð16Þ

Reasonably accurate temperature field solutions may possi-
bly be obtained without implicitly coupling the velocity
field, however this would disregard (1c), possibly produc-
ing unphysical results and lack the rigor needed for a ro-
bust methodology intended for more complex flows. The
implicit coupling and source function scaling introduce
no additional complexities implementing (17) algorithmi-
cally. The same PODc procedure of (10,11) is employed
on the temperature observations with:

W¼ w0þw0; where w0 ¼ T ð~u0ðGmÞÞ and w0 2 Rn�m�1:

ð17Þ

To scale the source function properly, concatenate
w ¼ ½w0 w0 
 and apply the sequential flux matching pro-
cedure of (9a–c) as

DGh;i ¼ Gh;i�1 � F hðT i�1Þ; ð18aÞ
bi ¼ F þh ðwiÞDGh;i; ð18bÞ

T i ¼
Xi

j¼1

bjwj: ð18cÞ
8. Results

To demonstrate the reduced-order temperature solution,
the previous test case of Re = 36,320 (~u� = 13.33 m/s) will
be used in the arbitrary Gh ¼ ½Q1 Q2 
 ¼ ½ 96 66 
W.
Fig. 5 plots the POD and PODc temperature modal spectra
and it can be seen that the PODc produces a slightly steeper
Fig. 5. Temperature modal spectra for the POD and PODc procedures.
spectrum in the lower order modes. This is a favorable
property, as resolving more of the dominant physics with
fewer modes allows one to truncate the expansion (16) ear-
lier for a given accuracy requirement. It is generally the
case that the temperature spectrum decays less sharply than
the velocity spectrum, as noted by other researchers [1],
implying more temperature modes are required for the
same order of accuracy as the velocity approximation.
Fig. 6(a) illustrates a few basic mean-centered POD modes
and Fig. 6(b) shows the PODc modes, both for a section of
the domain near the heated blocks surface where the largest
temperature gradients occur. The PODc procedure pro-
duces different temperature modes than the POD proce-
dure because the PODc formulates the modes as a
function of parameter values contained in G, converting
w(x) ? w(x,Gh).

Using all p = 10 modes, the implicit coupling has a max-
imum point-wise error of 0.529 �C. The relative error over
the domain and boundary condition satisfaction is defined
as

T err;k ¼
kT �k�T exactk2

kT exactk2

; ð19aÞ

Qerr;k ¼
kF hðT �kÞ�F hðT exactÞk2

kF hðT exactÞk2

¼kF hðT �k�T exactÞk2

kF hðT exactÞk2

; ð19bÞ

and the implicit coupling procedure with the PODc sub-
space and flux matching method of evaluating the weight
coefficients produced Terr = 0.0322 and Qerr = 4.17 � 10�4

Fig. 7 illustrates the exact and approximate solutions. The
largest errors occur near the surface of the blocks where
the largest temperature gradients occur. A large truncation
in system DOF can allow the dominant physics to be cap-
tured, but at the expense of some small-scale features being
discarded, usually in the form of sharp gradients. However,
these errors are of the order of 3%, making the temperature
approximation quite accurate considering the system was
reduced to 10 DOF from the original 60,000 DOF required
to compute the turbulent flow and heat transfer. The
approximate solution shows a slight overly diffusive temper-
ature field near the trailing edge of both blocks, which may
be partially attributed to a finite error between desired and
approximate solution boundary conditions.

Both velocity and temperature low-dimensional models
are constructed by using a linear subspace to describe the
physics for a range of parameters. Poor approximations
will result for the nonlinear RANS momentum Eq. (1b)
if the POD or PODc procedures are used outside the
parameter range, however the linearity of Eq. (1c) with
known~u� and keff allows one to predict a temperature field
from any parameter value as long as ~U and W subspaces
adequately describe the physics. If the boundary heat
fluxes were large enough to induce significant buoyancy
or even phase change in the case of a liquid medium, the
W subspace would not describe the thermal physics, for
instance. For an inlet Reynolds number of Re = 23,221
(�u = 8.48 m/s) and block power dissipation of



Fig. 6. Local (a) mean-centered POD modes and (b) PODc modes for test case.

Fig. 7. Exact and approximate temperature fields (�C).
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Gh ¼ ½Q1 Q2 
 ¼ ½ 349 475 
W, the maximum point-wise
temperature error was 3.07 �C (out of a maximum of
127 �C) and Terr = 0.0227. The integral boundary condi-
tion formulation was satisfied to Qerr � 10�5. The approx-
imate velocity field had a maximum 0.48 m/s maximum
error and a relative L2-error of 0.0043. Note the observa-
tion data in Table 1 ranges from 1/8 6 Q1/Q2 6 8, so it
is reasonable to expect that any forced convection flow
within the parameter range of Re and Q1/Q2 would per-
form with comparable accuracy.

9. Error analysis

In the POD methodology, the question of the minimum
number of modes to be retained in the reduced-order
model often arises. The Galerkin projection produces m-
coupled ODE’s in time for the weight coefficient evolution
and reducing the number of equations to be integrated in
time can result in significant economies for long term
dynamics investigations. The objective here was to produce
accurate steady models using the minimum number of sys-
tem observations. In either case, it must be demonstrated
that the POD subspaces (~U and W) sufficiently capture
the system physics. Some authors use projection energy
of the un-retained POD modes as a total error estimate

kek ¼ 1� E1!m ¼
Pm

k¼pþ1
kkPm

k¼1
kk

, although this assumes there is

no in-plane error [33]. Note k � k denotes the 2-norm
throughout this section unless otherwise noted. The para-
metric modeling methodology is based on a low number



Fig. 8. POD subspace in-plane (ei) and out-of-plane (ei) error component
schematics.

Fig. 9. Temperature flux matching procedure error and error bounds.
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of system observations, leading to a relatively few number
of basis functions and generally requiring that most, if not
all, modes will be retained.

Rathnam and Petzold [34] divide the error into the sub-
space projection error (eo) and in-plane error associated
with evaluating the modal weight coefficients (ei). Fig. 8
schematically depicts this error partitioning for a general
POD subspace U, where uobs is the system observation to
be approximated, u� is the approximate POD solution
and up is the affine orthogonal projection of uobs onto U
and represents the best POD approximation of uobs. To
show U contains sufficient information, the a posteriori
error estimate of keok 	 0 can be used, or at least
keok � keik, showing the error is dominated by the
in-plane contribution. For the approximate temperature
solution presented in Section 8, keok = kTpk � kTobsk =
O(10�4), consistent with the Qerr boundary error, implying
the temperature POD modes adequately capture the system
physics.

The error between the observation and the ‘true’ solu-
tion will not be considered as it is the user’s task to ensure
that numerical or experimental data faithfully represent the
true system. The POD model (u�) is an efficient solution to
the full model (uobs) and only describes the physics con-
tained within U. Thus, the low-dimensional model can
never be more accurate that the full model in the sense of
being closer to the true solution, but it can produce nearly
as accurate results as the full model in an exceedingly more
efficient manner.

To examine the convergence of the sequential solution
procedure of Eqs. (8(a)–(c)) and (18(a)–(c)), a dual
weighted residual technique [35] will be used. Consider
the canonical non-square optimization problem:

min kG�
X

i

aiF ik
( )

! Fa ¼ G: ð20Þ

This could be solved directly in a least squares manner as
a = F+G where F+ = (FTF)�1FT is the pseudo-inverse de-
fined above. The POD modes are normalized and ordered
in descending projection energy so the modal weight coef-
ficient magnitude should generally decay. Computing the
a0is sequentially will mimic this spectral decay because the
goal residual will decrease with each successive mode while
computing the vector of a0is all at once as F+G does not
guarantee this decrease in magnitude.
Define d as the vector of distances between the approx-
imate weight coefficients (a�) and the projected weight coef-
ficients (~aÞ. The true projected and approximate solutions
to (20) are then:

F ~a ¼ Gðtrue projected solutionÞ; ð21aÞ
Fa� ¼ Gðapproximate solutionÞ: ð21bÞ

The error functional is defined as J(a) = dTa, resulting in an
error of Jð~aÞ � Jða�Þ ¼ JðeÞ ¼ ðe; dÞ and a residual of
r = G � Fa�. The boundary condition error in state space
(e) is analogous to the in-plane error (ei) in the POD sub-
space. Note a small residual does not imply a small error.
The dual problem can then be formulated as a linear prob-
lem driven by the error functional, see (22), and the error
functional can be expressed:

F Ta0 ¼ d; ð22Þ

JðeÞ ¼ ðe; dÞ ¼ ðe; Fa0Þ ¼ ðF Te; a0Þ ¼ ðr; a0Þ: ð23Þ

The fourth term in (23) was derived from the third term
using Lagrange’s identity ðu;KvÞ ¼ ðbKu; vÞ where bK is the
adjoint of K, which reduces to KT for K 2 R. From (23)
it can be deduced that the error for the ith term in the
sequential solution is bounded by:

jJðeÞji 6
Xi

k¼1

ðjrkka0kjÞ: ð24Þ

This estimate provides a posteriori error bound because
knowledge of the vector of perturbations from the true pro-
jected solution is required. Fig. 9 plots the temperature
error and error bound for the test case presented in Section
8. The decrease in the error bound with increasing modes
implies the sequential matching procedure is weakly
convergent.

The POD subspace representation of the physics has
been demonstrated to be adequate and the sequential flux
matching procedure has shown to be bounded and weakly
converges to the desired boundary conditions. However,
the overall objective is to demonstrate how well the
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reduced-order model approximates the full model. Con-
sider a full nonlinear steady model in the canonical form
N(u) = 0, u 2 Rn. The reduced-order canonical solution of
the form u ¼ u0 þ

Pm
i¼1aiui can be expressed in the POD

subspace U = {u1,u2, . . .,um} through the action of
the orthogonal projector P from Section 4 as ~u ¼
P Tðu� u0Þ þ u0, P 2 Rn�m. The full (u) and reduced-order
approximate (u�) solutions can be written as [34]

u ¼ P Txþ ðP 0ÞTzþ u0 ¼ P Tx� eo þ u0; ð25aÞ
u� ¼ P Txþ P Ty þ u0 ¼ P Txþ ei þ u0; ð25bÞ

where P0 is the orthogonal complement to P. As above, the
approximations will employ all m POD modes such that
keok 	 0 rendering u 	 ~u. Solving for the in-plane error
ei = PTy and substituting in the modal expansion gives:

y ¼ ðP TÞþðu� � u0 � P TxÞ ¼ ðP TÞþðu� � ~uÞ

¼ ðP TÞþ
X

i

a�i /i �
X

i

~ai/i

 !
¼ ðP TÞþ

X
i

/iða� � ~aÞi: ð26Þ

Returning to the thermal test case, it can be seen that the
projection matrix is simply the concatenation of the tem-
perature POD modes, P = W = {w1,w2, . . .,wm} such that
WTTobs = b. Since W is an orthogonal matrix,
W
Pm

i¼1wi ¼ I 2 Rm, (26) reduces to

y ¼ a�i � ~ai ¼ �d: ð27Þ

Comparison of the reduced-order approximation to an
affine projection of the full model on the POD subspace
produces the same error estimate as the adjoint problem
to the boundary condition error. Therefore, the boundary
condition error bound is the in-plane error estimate keik,
which suggests the implicit assumption of matching only
the relevant control surface integral conditions in the flux
matching procedure is valid and leads to unique approxi-
mate solutions. As a final note, the triangle inequality
can be used to bound the total error keo + eik 6 keok + keik
even though keok � keik for parameter values within the
predefined range.

10. Conclusions

The traditional POD methodology has been reformu-
lated to treat parametric turbulent forced convective flows
for a predefined range of flow boundary conditions.
Orthogonal complement POD subspaces were introduced
to satisfy inhomogeneous boundary conditions, eliminating
the additional effort required by homogenization proce-
dures and extending the reduced-order methodology to a
wide range of flows. A flux matching procedure was formu-
lated to evaluate the modal weight coefficients after the
standard methods of Galerkin projection and extended
state vectors were shown to be ineffective for parametric
turbulent forced convection. An implicit coupling proce-
dure was developed to link the temperature and velocity
fields, greatly improving the accuracy of low-dimensional
temperature predictions. The overall reduced-order model-
ing framework presented here was able to condense a
numerical model requiring 60,000 DOF to 20 DOF for an
order 103 reduction, while still retaining greater that 95%
accuracy over the domain. Rigorous a posteriori error
bounds show that the flux matching procedure is an
accurate and computationally superior approach for
low-dimensional modeling of nonlinear steady turbulent
convection.

The methodology presented here is equally applicable to
experimental data and could be used to create low-dimen-
sional models of stochastically characterized systems and
integrated into large-scale simulations, creating an exp-
erimentally validated computationally efficient modeling
methodology for complex systems. Slightly less accurate
models may be far superior to large expensive models dur-
ing early system design and optimization, where many dif-
ferent parameter values and component interactions may
need to be evaluated. The low-dimensional framework
developed here also has the advantage of characterizing
distributed parameter systems in state space integral condi-
tions, alleviating the need to specify detailed flow and heat
transfer profiles that are often unknown. It also does not
require the evaluation of the governing equations, making
it well suited for inverse problems and parameter identifica-
tion studies.
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